Second-order asymptotics in level crossing for differences of renewal processes
نویسنده
چکیده
We consider level crossing for the difference of independent renewal processes. Second-order expansions for the distribution function of the crossing time of level n are found, as n + a. As a by-product several other results on the difference process are found. The expected minimum of the difference process appears to play an important role in the analysis. This makes this problem essentially harder than the level crossing for the sum process which was studied earlier.
منابع مشابه
Importance Sampling for the Ruin Problem for general gaussian Processes
We study a family of importance sampling estimators for the problem of computing the probability of level crossing when the crossing level is large, or when the intensity of the noise is small. We give general results concerning centered gaussian processes with drift and develop a method which allows to compute explicitly the asymptotics of the second order moment, with a special mention for th...
متن کاملOrder estimation for a special class of hidden Markov sources and binary renewal processes
We consider the estimation of the order, i.e., the number of hidden states, of a special class of discrete-time finite-alphabet hidden Markov sources. This class can be characterized in terms of equivalent renewal processes. No a priori bound is assumed on the maximum permissible order. An order estimator based on renewal types is constructed, and is shown to be strongly consistent by computing...
متن کاملCramér asymptotics for finite time first passage probabilities of general Lévy processes
We derive the exact asymptotics of P (supu≤tX(u) > x) if x and t tend to infinity with x/t constant, for a Lévy process X that admits exponential moments. The proof is based on a renewal argument and a two-dimensional renewal theorem of Höglund (1990).
متن کاملThe probability of exceeding a piecewise deterministic barrier by the heavy-tailed renewal compound process
We analyze the asymptotics of crossing a high piecewise linear barriers by a renewal compound process with the subexponential jumps. The study is motivated by ruin probabilities of two insurance companies (or two branches of the same company) that divide between them both claims and premia in some specified proportions when the initial reserves of both companies tend to infinity.
متن کاملExtended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy
Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001